

Introduction

This package provides easy keyboard/pointer/window management macro creation
and GUI automation for python versions 2.7 and 3.4+.
Currently it works on Windows and Linux (both under X and with limited
functionallity under Wayland).
Among it’s features are:

	Low level hooks for keyboard, pointer events

	A hook for window creation, destruction and focus change

	Support for registering hotkeys and hotstrings

	Simulating keyboard/pointer events

	Providing platform independent definition/mapping of keys/buttons

	Listing open windows

	Managing open windows

	And more!

Note

Window management functionallity is not available under Wayland.

More, keyboard and pointer functions require root access under Wayland.

API

	Interfaces
	Keyboard

	Pointer

	Window

	Events
	Pointer

	Keyboard

	Window

	Enumerations

Interfaces

	
macpy.record(record_type, stop_key=None, timer=None)

	Record events of record_type and return a list.

	Parameters

	
	record_type (RecordType) – The type of events to record.

	stop_key (Key) – The key or button which will end the
recording. If stop_key is None [https://docs.python.org/3/library/constants.html#None] the recording will go on
until timer runs out.

	timer (float [https://docs.python.org/3/library/functions.html#float]) – The duration of recording session. If timer is
None [https://docs.python.org/3/library/constants.html#None] the session will go on until specified key is pressed.

	Returns

	A list of recorded events.

	Return type

	[Event]

	
macpy.replay(event_list, delay=0)

	Replay events from a sequence.

	Parameters

	
	event_list ([Event]) – A sequence of events.

	delay (float [https://docs.python.org/3/library/functions.html#float]) – The seconds to wait between each event (or pair).

Keyboard

	
class macpy.Keyboard

	Keyboard interface object.

Allows simulating keyboard input as well as reading data from connected
physical keyboards.

	
close()

	Close opened resources and cleanly exit mainloop.

Call this method when you are done with this object.

	
get_key_state(key)

	Check whether the key is pressed or released.

	Parameters

	key (Key) – The key to check.

	Returns

	Current state of the key.

	Return type

	KeyState

	
install_keyboard_hook(callback, grab=False)

	Installs a low level hook that sends all keyboard input to
the callback.

Callback must take a single event argument.

For event definition see KeyboardEvent.

	Parameters

	
	callback (Callable) – A callable which receives events.

	grab (bool [https://docs.python.org/3/library/functions.html#bool]) – If grab is True [https://docs.python.org/3/library/constants.html#True] events are consumed and not
passed through to other applications.
.. note:

Even if grab is :obj:`True`, synthetic events are still
allowed on Windows.

Under wayland this option does nothing.

	
uninstall_keyboard_hook()

	Uninstall keyboard hook and stop hook’s loop.

You don’t have to explicitly call this method, calling close()
automatically removes hook if it’s installed.

	
init_hotkeys()

	Initialize hotkey loop.

You need to call this method once before using any hotkey related
methods.

	
uninit_hotkeys()

	Deinitialize hotkey loop.

You don’t have to explicitly call this method, calling close()
automatically stop hotkey loop if it’s started.

	
register_hotkey(key, modifiers, callback)

	Register a key combination that once pressed triggers callback.

Note

It is currently not possible to define hotkeys which trigger only
with e.g. KEY_LEFTSHIFT. Left/right keys
are automatically converted to generic modifier e.g.
KEY_SHIFT.

	Parameters

	
	key (Key) – The key which triggers callback.

	modifiers ([Key, ...]) – Iterable of modifier keys that
also need to be pressed. Valid modifiers are
KEY_SHIFT,
KEY_CTRL, KEY_ALT
and KEY_META.

	callback (Callable) – Callable which will be called
with HotKey object as a single argument.

	Returns

	A hotkey object.

	Return type

	HotKey

	
unregister_hotkey(hotkey)

	Unegister a previously registered hotkey.

	Parameters

	hotkey (HotKey) – A hotkey object as returned by e.g.
register_hotkey().

	
register_hotstring(string, triggers, callback)

	Register a string that once typed will trigger callback.

If triggers are empty, the string will trigger as soon as it’s typed.
Otherwise it will only trigger if it’s followed by one of the triggers.

Keyboard hook needs to be installed for hotstrings to work. Otherwise
this method raises RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError].

	Parameters

	
	string (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string that will trigger the callback.

	triggers ((str [https://docs.python.org/3/library/stdtypes.html#str])) – Iterable of characters that will be checked for
after the string.

	callback (Callable) – A callable that will be called
with HotString as a single argument.

	Returns

	A hotstring object.

	Return type

	HotString

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

	
unregister_hotstring(hotstring)

	Unregister a previously registered hotstring.

	Parameters

	hotstring (HotString) – A hotstring object as returned
by e.g. register_hotstring().

	
keypress(key, state=None)

	Simulate a key press/release event.

	Parameters

	
	key (Key) – Key to simulate.

	state (KeyState) – The state to simulate. If state
is None [https://docs.python.org/3/library/constants.html#None] (default), both key press and release are
simulated.

	
type(string)

	Type a given string.

Depending on underlying implementation and current platform this may
be more efficient then using keypress().

	Parameters

	string (str [https://docs.python.org/3/library/stdtypes.html#str]) – String to type.

Pointer

	
class macpy.Pointer

	Pointer interface object.

Allows simulating pointer input as well as reading data from connected
physical pointing devices.

	
close()

	Close opened resources and cleanly exit mainloop.

Call this method when you are done with this object.

	
install_pointer_hook(callback, grab=False)

	Installs a low level hook that sends all pointer events to
the callback.

Callback must take a single event argument.

For event definitions see PointerEventMotion,
PointerEventButton
and PointerEventAxis.

	Parameters

	
	callback (Callable) – A callable which will receive pointer events.

	grab (bool [https://docs.python.org/3/library/functions.html#bool]) – If grab is True [https://docs.python.org/3/library/constants.html#True] events are consumed and not
passed through to other applications.
.. note:

Even if grab is :obj:`True`, synthetic events are still
allowed on Windows.

Under wayland this option does nothing.

	
uninstall_pointer_hook()

	Uninstalls pointer hook and stops hook’s loop.

You don’t have to explicitly call this method. Calling close()
will remove the hook automatically if it’s installed.

	
warp(x, y, relative=False)

	Warp pointer to the given location on screen.

Pointer cannot be warped beyond the bounds of the virtual screen.

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – X coordinate.

	y (int [https://docs.python.org/3/library/functions.html#int]) – Y coordinate.

	relative (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether given coordinates are absolute or relative
to current pointer position.

	
scroll(axis, value)

	Simulate mouse scroll wheel along the given axis.

Note

value is platform dependent, so the same value may result in
different amount scrolled depending on current platform.

	Parameters

	
	axis (PointerAxis) – The axis along which to scroll.

	value (int [https://docs.python.org/3/library/functions.html#int]) – The amount which to scroll. See Note.

	
click(key, state=None)

	Simulate a mouse click.

	Parameters

	
	key (Key) – A button to click.

	state (KeyState) – The state to simulate. If state
is None [https://docs.python.org/3/library/constants.html#None] both button press and release are simulated.

	
get_button_state(button)

	Check whether the button is pressed or released.

	Parameters

	button (Key) – The button to check.

	Returns

	Current state of the key.

	Return type

	KeyState

	
position

	Current position of the pointer on screen.

	Returns

	
	A namedtuple where first member is the x coordinate and the

	second - y coordinate, in pixels.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Window

	
class macpy.Window(window)

	Window interface object.

Allows manipulating windows on supported platforms:
activating, minimizing, closing, moving, etc.

Rather than instanciating this class directly, use one of the class
methods, e.g. get_active().

	
title

	Visible window title. Might be None [https://docs.python.org/3/library/constants.html#None] if window is
already closed.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
wm_class

	Window class. Might be None [https://docs.python.org/3/library/constants.html#None] if window is
already closed.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pid

	PID of the process to which this window belongs. Might be
None [https://docs.python.org/3/library/constants.html#None] if window is closed or if window does not set
this property.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
classmethod install_window_hook(callback)

	Hook window creation, destruction and focus change.

Callback is called with WindowEvent as a single
argument.

	Parameters

	callback (Callable) – A callable to receive events.

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError]

	
classmethod uninstall_window_hook()

	Remove window hook.

Since hook runs in a separate thread, you should call this method
once you are done for a clean exit.

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError]

	
classmethod list_windows()

	Return a tuple of currently open window objects.

	Returns

	A tuple of currently open windows.

	Return type

	(Window, …)

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError]

	
classmethod get_active()

	Return currently focused window.

	Returns

	A window object.

	Return type

	Window

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError]

	
classmethod get_under_pointer()

	Return the window that is currently under pointer.

	Returns

	A window object.

	Return type

	Window

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError]

	
classmethod get_by_class(wm_class)

	Return the first window whose wm_class matches wm_class.

	Parameters

	wm_class (str [https://docs.python.org/3/library/stdtypes.html#str]) – Window class to match.

	Returns

	A window object.

	Return type

	Window

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError]

	
classmethod get_by_title(title)

	Return the first window whose title matches title.

	Parameters

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Partial window title to match.

	Returns

	A window object.

	Return type

	Window

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError]

	
state

	This window’s state.

	Returns

	Window state.

	Return type

	WindowState

	
position

	This window’s position on screen in pixels.

	Returns

	A namedtuple of x and y coordinates.

	Return type

	(int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])

	
size

	This window’s size in pixels.

	Returns

	A namedtuple of width and height.

	Return type

	(int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])

	
activate()

	Activate this window.

	
restore()

	Restore this window.

	
minimize()

	Minimize this window.

	
maximize()

	Maximize this window.

	
resize(width, height)

	Resize this window to the given width and height in pixels.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – New width.

	height (int [https://docs.python.org/3/library/functions.html#int]) – New height.

	
move(x, y)

	Move this window to the given screen x and y coordinates in pixels.

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – New position along x axis.

	y (int [https://docs.python.org/3/library/functions.html#int]) – New position along y axis.

	
close()

	Request this window to close.

If there are unsaved data, the window may refuse to close.

	
force_close()

	Forcibly close this window.

	
send_event(event)

	Send an input event dirrectly to this window, regardless of whether
it has input focus.

Valid input events are KeyboardEvent,
PointerEventMotion,
PointerEventButton and
PointerEventAxis.

Note

For events that contain coordinates, these coordinates are always
relative to this window.

	Parameters

	event (Event) – Event to send.

Events

	
class macpy.event.Event

	Base class for all macpy events.

	
time

	Event timestamp. This does not translate to
concrete time but timestamps of later events are guaranteed to be
greater than timestamps of earlier events.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

Pointer

	
class macpy.event.PointerEventMotion(x, y, modifiers)

	Event representing pointer movement on screen.

	
position

	A namedtuple containing x and y coordinates
of pointer on screen.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
modifiers

	A namedtuple containing modifier state at
the time of this event.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
__init__(x, y, modifiers)

	Event representing pointer motion.

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – Pointer position on x axis in pixels.

	y (int [https://docs.python.org/3/library/functions.html#int]) – Pointer position on y axis in pixels.

	modifiers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Modifier key state at the time of this event.

	
class macpy.event.PointerEventButton(x, y, button, state, modifiers)

	Event representing button events on connected pointing devices.

	
button

	Button that was pressed/released.

	Type

	Key

	
state

	Whether button was pressed or
released.

	Type

	KeyState

	
modifiers

	A namedtuple containing modifier state at
the time of this event.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
__init__(x, y, button, state, modifiers)

	Event representing button press/release.

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – Pointer position on x axis in pixels.

	y (int [https://docs.python.org/3/library/functions.html#int]) – Pointer position on y axis in pixels.

	button (Key) – Button that was pressed/released.

	state (KeyState) – Whether the button was pressed or
released.

	modifiers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Modifier key state at the time of this event.

	
class macpy.event.PointerEventAxis(x, y, value, axis, modifiers)

	Event representing scrolling.

	
value

	The amount scrolled. This is platform dependent.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
axis

	The axis along which scrolling ocured.

	Type

	PointerAxis

	
modifiers

	A namedtuple containing modifier state at
the time of this event.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
__init__(x, y, value, axis, modifiers)

	Event representing scrolling.

	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – Pointer position on x axis in pixels.

	y (int [https://docs.python.org/3/library/functions.html#int]) – Pointer position on y axis in pixels.

	value (int [https://docs.python.org/3/library/functions.html#int]) – The amount scrolled, exact interpretation of this
value is platform-specific.

	axis (PointerAxis) – The axis along which to scroll.

	modifiers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Modifier key state at the time of this event.

Keyboard

	
class macpy.event.KeyboardEvent(key, state, char, modifiers, locks)

	Event representing key press/release on connected keyboards.

	
key

	The key that was pressed/released.

	Type

	Key

	
state

	Whether the key was pressed or
released.

	Type

	KeyState

	
char

	The character produced by this key event if any.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
modifiers

	A namedtuple containing modifier state at
the time of this event.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
locks

	A namedtuple containing lock key state at the
time of this event.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
__init__(key, state, char, modifiers, locks)

	Event representing key press/release.

	Parameters

	
	key (Key) – The key that will be pressed/released.

	state (KeyState) – Whether the key will be pressed or
released.

	char (str [https://docs.python.org/3/library/stdtypes.html#str]) – The character that will be typed. Currently this is
ignored, you can set it to None [https://docs.python.org/3/library/constants.html#None].

	modifiers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Modifier key state at the time of this event.

	locks (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Lock key state at the time of this event.

	
class macpy.event.HotKey(key, modifiers)

	A hotkey object.

Hotkey object are hashable and compare equal regardless of timestamps.

	
key

	A key that triggered this event.

	Type

	Key

	
modifiers

	A frozenset of modifier keys that were
also pressed.

	Type

	frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset]

	
class macpy.event.HotString(string, triggers, trigger=None)

	A hotstring object.

Hotstring objects are hashable and compare equal regardless of timestamps
and the current trigger.

	
string

	The string that needs to be typed to trigger
this hotstring.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
triggers

	The trigger keys that need to be typed
after the string. This frozenset may be empty.

	Type

	frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset]

	
trigger

	The trigger that triggered this hotstring.
May be None [https://docs.python.org/3/library/constants.html#None].

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Window

	
class macpy.event.WindowEvent(window, event_type)

	Event representing window creation, destruction and focus change.

	
window

	The window that was
created/destroyed/focused.

	Type

	Window

	
type

	The action that was taken on
the window.

	Type

	WindowEventType

Enumerations

	
class macpy.RecordType

	An enumeration specifying which events to record.

	
KEYBOARD

	Record keyboard events only.

	
POINTER

	Record pointer events only.

	
BOTH

	Record both keyboard and pointer events.

	
class macpy.key.Key

	An enumeration describing platform independent keys/buttons.

While members of this enum behave the same on every platform, not every
platform defines every key. For complete list of keys/buttons defined
on your platform see input.h on Linux and Virtual Keycodes [https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx] on
Windows.

Members of this enum are also valid tuple [https://docs.python.org/3/library/stdtypes.html#tuple] where first member is
a Linux event code and second member is a Windows virtual keycode.
These can also be accessed as attributes ec and vk
respectively.

	
ec

	A Linux event code that is this enum member.

	Returns

	A Linux event code.

	Return type

	EventCode

	
vk

	A Windows virtual keycode that is this enum member.

	Returns

	A Windows virtual keycode.

	Return type

	VirtualKeycode

	
class macpy.key.KeyState

	An enumeration describing whether the key/button is pressed or released.

This enum implements __bool__(), so if the key is pressed it will be
True [https://docs.python.org/3/library/constants.html#True] and False [https://docs.python.org/3/library/constants.html#False] otherwise.

	
class macpy.event.PointerAxis

	An enumeration describing pointer scrolling axis.

	
class macpy.event.WindowState

	An enumeration describing window state.

	
class macpy.event.WindowEventType

	An enumeration describing whether window was created, destroyed
or focused.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 macpy	

 	
 	
 macpy.event	

 	
 	
 macpy.key	

Index

 _
 | A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (macpy.event.KeyboardEvent method)

 	(macpy.event.PointerEventAxis method)

 	(macpy.event.PointerEventButton method)

 	(macpy.event.PointerEventMotion method)

A

 	
 	activate() (macpy.Window method)

 	
 	axis (macpy.event.PointerEventAxis attribute)

B

 	
 	BOTH (macpy.RecordType attribute)

 	
 	button (macpy.event.PointerEventButton attribute)

C

 	
 	char (macpy.event.KeyboardEvent attribute)

 	click() (macpy.Pointer method)

 	
 	close() (macpy.Keyboard method)

 	(macpy.Pointer method)

 	(macpy.Window method)

E

 	
 	ec (macpy.key.Key attribute)

 	
 	Event (class in macpy.event)

F

 	
 	force_close() (macpy.Window method)

G

 	
 	get_active() (macpy.Window class method)

 	get_button_state() (macpy.Pointer method)

 	get_by_class() (macpy.Window class method)

 	
 	get_by_title() (macpy.Window class method)

 	get_key_state() (macpy.Keyboard method)

 	get_under_pointer() (macpy.Window class method)

H

 	
 	HotKey (class in macpy.event)

 	
 	HotString (class in macpy.event)

I

 	
 	init_hotkeys() (macpy.Keyboard method)

 	install_keyboard_hook() (macpy.Keyboard method)

 	
 	install_pointer_hook() (macpy.Pointer method)

 	install_window_hook() (macpy.Window class method)

K

 	
 	Key (class in macpy.key)

 	key (macpy.event.HotKey attribute)

 	(macpy.event.KeyboardEvent attribute)

 	Keyboard (class in macpy)

 	
 	KEYBOARD (macpy.RecordType attribute)

 	KeyboardEvent (class in macpy.event)

 	keypress() (macpy.Keyboard method)

 	KeyState (class in macpy.key)

L

 	
 	list_windows() (macpy.Window class method)

 	
 	locks (macpy.event.KeyboardEvent attribute)

M

 	
 	macpy (module), [1]

 	macpy.event (module), [1]

 	macpy.key (module)

 	maximize() (macpy.Window method)

 	minimize() (macpy.Window method)

 	
 	modifiers (macpy.event.HotKey attribute)

 	(macpy.event.KeyboardEvent attribute)

 	(macpy.event.PointerEventAxis attribute)

 	(macpy.event.PointerEventButton attribute)

 	(macpy.event.PointerEventMotion attribute)

 	move() (macpy.Window method)

P

 	
 	pid (macpy.Window attribute)

 	Pointer (class in macpy)

 	POINTER (macpy.RecordType attribute)

 	PointerAxis (class in macpy.event)

 	PointerEventAxis (class in macpy.event)

 	
 	PointerEventButton (class in macpy.event)

 	PointerEventMotion (class in macpy.event)

 	position (macpy.event.PointerEventMotion attribute)

 	(macpy.Pointer attribute)

 	(macpy.Window attribute)

R

 	
 	record() (in module macpy)

 	RecordType (class in macpy)

 	register_hotkey() (macpy.Keyboard method)

 	
 	register_hotstring() (macpy.Keyboard method)

 	replay() (in module macpy)

 	resize() (macpy.Window method)

 	restore() (macpy.Window method)

S

 	
 	scroll() (macpy.Pointer method)

 	send_event() (macpy.Window method)

 	size (macpy.Window attribute)

 	
 	state (macpy.event.KeyboardEvent attribute)

 	(macpy.Window attribute)

 	(macpy.event.PointerEventButton attribute)

 	string (macpy.event.HotString attribute)

T

 	
 	time (macpy.event.Event attribute)

 	title (macpy.Window attribute)

 	trigger (macpy.event.HotString attribute)

 	
 	triggers (macpy.event.HotString attribute)

 	type (macpy.event.WindowEvent attribute)

 	type() (macpy.Keyboard method)

U

 	
 	uninit_hotkeys() (macpy.Keyboard method)

 	uninstall_keyboard_hook() (macpy.Keyboard method)

 	uninstall_pointer_hook() (macpy.Pointer method)

 	
 	uninstall_window_hook() (macpy.Window class method)

 	unregister_hotkey() (macpy.Keyboard method)

 	unregister_hotstring() (macpy.Keyboard method)

V

 	
 	value (macpy.event.PointerEventAxis attribute)

 	
 	vk (macpy.key.Key attribute)

W

 	
 	warp() (macpy.Pointer method)

 	Window (class in macpy)

 	window (macpy.event.WindowEvent attribute)

 	
 	WindowEvent (class in macpy.event)

 	WindowEventType (class in macpy.event)

 	WindowState (class in macpy.event)

 	wm_class (macpy.Window attribute)

 nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Interfaces

 		
 Keyboard

 		
 Pointer

 		
 Window

 		
 Events

 		
 Pointer

 		
 Keyboard

 		
 Window

 		
 Enumerations

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

