
macpy Documentation
Release 0.1.0b

Tomas Ravinskas

Feb 07, 2022

Contents:

1 Interfaces 3
1.1 Keyboard . 3
1.2 Pointer . 5
1.3 Window . 7

2 Events 11
2.1 Pointer . 11
2.2 Keyboard . 13
2.3 Window . 14

3 Enumerations 15

Python Module Index 17

Index 19

i

ii

macpy Documentation, Release 0.1.0b

This package provides easy keyboard/pointer/window management macro creation and GUI automation for python
versions 2.7 and 3.4+. Currently it works on Windows and Linux (both under X and with limited functionallity under
Wayland). Among it’s features are:

• Low level hooks for keyboard, pointer events

• A hook for window creation, destruction and focus change

• Support for registering hotkeys and hotstrings

• Simulating keyboard/pointer events

• Providing platform independent definition/mapping of keys/buttons

• Listing open windows

• Managing open windows

• And more!

Note: Window management functionallity is not available under Wayland.

More, keyboard and pointer functions require root access under Wayland.

Contents: 1

macpy Documentation, Release 0.1.0b

2 Contents:

CHAPTER 1

Interfaces

macpy.record(record_type, stop_key=None, timer=None)
Record events of record_type and return a list.

Parameters

• record_type (RecordType) – The type of events to record.

• stop_key (Key) – The key or button which will end the recording. If stop_key is None
the recording will go on until timer runs out.

• timer (float) – The duration of recording session. If timer is None the session will go
on until specified key is pressed.

Returns A list of recorded events.

Return type [Event]

macpy.replay(event_list, delay=0)
Replay events from a sequence.

Parameters

• event_list ([Event]) – A sequence of events.

• delay (float) – The seconds to wait between each event (or pair).

1.1 Keyboard

class macpy.Keyboard
Keyboard interface object.

Allows simulating keyboard input as well as reading data from connected physical keyboards.

close()
Close opened resources and cleanly exit mainloop.

Call this method when you are done with this object.

3

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

macpy Documentation, Release 0.1.0b

get_key_state(key)
Check whether the key is pressed or released.

Parameters key (Key) – The key to check.

Returns Current state of the key.

Return type KeyState

install_keyboard_hook(callback, grab=False)
Installs a low level hook that sends all keyboard input to the callback.

Callback must take a single event argument.

For event definition see KeyboardEvent.

Parameters

• callback (Callable) – A callable which receives events.

• grab (bool) – If grab is True events are consumed and not passed through to other
applications. .. note:

Even if grab is :obj:`True`, synthetic events are still
allowed on Windows.

Under wayland this option does nothing.

uninstall_keyboard_hook()
Uninstall keyboard hook and stop hook’s loop.

You don’t have to explicitly call this method, calling close() automatically removes hook if it’s in-
stalled.

init_hotkeys()
Initialize hotkey loop.

You need to call this method once before using any hotkey related methods.

uninit_hotkeys()
Deinitialize hotkey loop.

You don’t have to explicitly call this method, calling close() automatically stop hotkey loop if it’s
started.

register_hotkey(key, modifiers, callback)
Register a key combination that once pressed triggers callback.

Note: It is currently not possible to define hotkeys which trigger only with e.g. KEY_LEFTSHIFT.
Left/right keys are automatically converted to generic modifier e.g. KEY_SHIFT.

Parameters

• key (Key) – The key which triggers callback.

• modifiers ([Key, ...]) – Iterable of modifier keys that also need to be pressed.
Valid modifiers are KEY_SHIFT, KEY_CTRL, KEY_ALT and KEY_META.

• callback (Callable) – Callable which will be called with HotKey object as a single
argument.

Returns A hotkey object.

4 Chapter 1. Interfaces

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

macpy Documentation, Release 0.1.0b

Return type HotKey

unregister_hotkey(hotkey)
Unegister a previously registered hotkey.

Parameters hotkey (HotKey) – A hotkey object as returned by e.g.
register_hotkey().

register_hotstring(string, triggers, callback)
Register a string that once typed will trigger callback.

If triggers are empty, the string will trigger as soon as it’s typed. Otherwise it will only trigger if it’s
followed by one of the triggers.

Keyboard hook needs to be installed for hotstrings to work. Otherwise this method raises
RuntimeError.

Parameters

• string (str) – The string that will trigger the callback.

• triggers ((str)) – Iterable of characters that will be checked for after the string.

• callback (Callable) – A callable that will be called with HotString as a single
argument.

Returns A hotstring object.

Return type HotString

Raises RuntimeError

unregister_hotstring(hotstring)
Unregister a previously registered hotstring.

Parameters hotstring (HotString) – A hotstring object as returned by e.g.
register_hotstring().

keypress(key, state=None)
Simulate a key press/release event.

Parameters

• key (Key) – Key to simulate.

• state (KeyState) – The state to simulate. If state is None (default), both key press
and release are simulated.

type(string)
Type a given string.

Depending on underlying implementation and current platform this may be more efficient then using
keypress().

Parameters string (str) – String to type.

1.2 Pointer

class macpy.Pointer
Pointer interface object.

Allows simulating pointer input as well as reading data from connected physical pointing devices.

1.2. Pointer 5

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

macpy Documentation, Release 0.1.0b

close()
Close opened resources and cleanly exit mainloop.

Call this method when you are done with this object.

install_pointer_hook(callback, grab=False)
Installs a low level hook that sends all pointer events to the callback.

Callback must take a single event argument.

For event definitions see PointerEventMotion, PointerEventButton and
PointerEventAxis.

Parameters

• callback (Callable) – A callable which will receive pointer events.

• grab (bool) – If grab is True events are consumed and not passed through to other
applications. .. note:

Even if grab is :obj:`True`, synthetic events are still
allowed on Windows.

Under wayland this option does nothing.

uninstall_pointer_hook()
Uninstalls pointer hook and stops hook’s loop.

You don’t have to explicitly call this method. Calling close() will remove the hook automatically if it’s
installed.

warp(x, y, relative=False)
Warp pointer to the given location on screen.

Pointer cannot be warped beyond the bounds of the virtual screen.

Parameters

• x (int) – X coordinate.

• y (int) – Y coordinate.

• relative (bool) – Whether given coordinates are absolute or relative to current pointer
position.

scroll(axis, value)
Simulate mouse scroll wheel along the given axis.

Note: value is platform dependent, so the same value may result in different amount scrolled depending
on current platform.

Parameters

• axis (PointerAxis) – The axis along which to scroll.

• value (int) – The amount which to scroll. See Note.

click(key, state=None)
Simulate a mouse click.

Parameters

6 Chapter 1. Interfaces

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

macpy Documentation, Release 0.1.0b

• key (Key) – A button to click.

• state (KeyState) – The state to simulate. If state is None both button press and
release are simulated.

get_button_state(button)
Check whether the button is pressed or released.

Parameters button (Key) – The button to check.

Returns Current state of the key.

Return type KeyState

position
Current position of the pointer on screen.

Returns

A namedtuple where first member is the x coordinate and the second - y coordinate, in
pixels.

Return type tuple

1.3 Window

class macpy.Window(window)
Window interface object.

Allows manipulating windows on supported platforms: activating, minimizing, closing, moving, etc.

Rather than instanciating this class directly, use one of the class methods, e.g. get_active().

title
Visible window title. Might be None if window is already closed.

Type str

wm_class
Window class. Might be None if window is already closed.

Type str

pid
PID of the process to which this window belongs. Might be None if window is closed or if window does
not set this property.

Type int

classmethod install_window_hook(callback)
Hook window creation, destruction and focus change.

Callback is called with WindowEvent as a single argument.

Parameters callback (Callable) – A callable to receive events.

Raises NotImplementedError

classmethod uninstall_window_hook()
Remove window hook.

Since hook runs in a separate thread, you should call this method once you are done for a clean exit.

Raises NotImplementedError

1.3. Window 7

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/exceptions.html#NotImplementedError

macpy Documentation, Release 0.1.0b

classmethod list_windows()
Return a tuple of currently open window objects.

Returns A tuple of currently open windows.

Return type (Window, . . .)

Raises NotImplementedError

classmethod get_active()
Return currently focused window.

Returns A window object.

Return type Window

Raises NotImplementedError

classmethod get_under_pointer()
Return the window that is currently under pointer.

Returns A window object.

Return type Window

Raises NotImplementedError

classmethod get_by_class(wm_class)
Return the first window whose wm_class matches wm_class.

Parameters wm_class (str) – Window class to match.

Returns A window object.

Return type Window

Raises NotImplementedError

classmethod get_by_title(title)
Return the first window whose title matches title.

Parameters title (str) – Partial window title to match.

Returns A window object.

Return type Window

Raises NotImplementedError

state
This window’s state.

Returns Window state.

Return type WindowState

position
This window’s position on screen in pixels.

Returns A namedtuple of x and y coordinates.

Return type (int, int)

size
This window’s size in pixels.

Returns A namedtuple of width and height.

Return type (int, int)

8 Chapter 1. Interfaces

https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

macpy Documentation, Release 0.1.0b

activate()
Activate this window.

restore()
Restore this window.

minimize()
Minimize this window.

maximize()
Maximize this window.

resize(width, height)
Resize this window to the given width and height in pixels.

Parameters

• width (int) – New width.

• height (int) – New height.

move(x, y)
Move this window to the given screen x and y coordinates in pixels.

Parameters

• x (int) – New position along x axis.

• y (int) – New position along y axis.

close()
Request this window to close.

If there are unsaved data, the window may refuse to close.

force_close()
Forcibly close this window.

send_event(event)
Send an input event dirrectly to this window, regardless of whether it has input focus.

Valid input events are KeyboardEvent, PointerEventMotion, PointerEventButton and
PointerEventAxis.

Note: For events that contain coordinates, these coordinates are always relative to this window.

Parameters event (Event) – Event to send.

1.3. Window 9

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

macpy Documentation, Release 0.1.0b

10 Chapter 1. Interfaces

CHAPTER 2

Events

class macpy.event.Event
Base class for all macpy events.

time
Event timestamp. This does not translate to concrete time but timestamps of later events are guaranteed to
be greater than timestamps of earlier events.

Type float

2.1 Pointer

class macpy.event.PointerEventMotion(x, y, modifiers)
Event representing pointer movement on screen.

position
A namedtuple containing x and y coordinates of pointer on screen.

Type tuple

modifiers
A namedtuple containing modifier state at the time of this event.

Type tuple

__init__(x, y, modifiers)
Event representing pointer motion.

Parameters

• x (int) – Pointer position on x axis in pixels.

• y (int) – Pointer position on y axis in pixels.

• modifiers (dict) – Modifier key state at the time of this event.

11

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

macpy Documentation, Release 0.1.0b

class macpy.event.PointerEventButton(x, y, button, state, modifiers)
Event representing button events on connected pointing devices.

button
Button that was pressed/released.

Type Key

state
Whether button was pressed or released.

Type KeyState

modifiers
A namedtuple containing modifier state at the time of this event.

Type tuple

__init__(x, y, button, state, modifiers)
Event representing button press/release.

Parameters

• x (int) – Pointer position on x axis in pixels.

• y (int) – Pointer position on y axis in pixels.

• button (Key) – Button that was pressed/released.

• state (KeyState) – Whether the button was pressed or released.

• modifiers (dict) – Modifier key state at the time of this event.

class macpy.event.PointerEventAxis(x, y, value, axis, modifiers)
Event representing scrolling.

value
The amount scrolled. This is platform dependent.

Type float

axis
The axis along which scrolling ocured.

Type PointerAxis

modifiers
A namedtuple containing modifier state at the time of this event.

Type tuple

__init__(x, y, value, axis, modifiers)
Event representing scrolling.

Parameters

• x (int) – Pointer position on x axis in pixels.

• y (int) – Pointer position on y axis in pixels.

• value (int) – The amount scrolled, exact interpretation of this value is platform-
specific.

• axis (PointerAxis) – The axis along which to scroll.

• modifiers (dict) – Modifier key state at the time of this event.

12 Chapter 2. Events

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

macpy Documentation, Release 0.1.0b

2.2 Keyboard

class macpy.event.KeyboardEvent(key, state, char, modifiers, locks)
Event representing key press/release on connected keyboards.

key
The key that was pressed/released.

Type Key

state
Whether the key was pressed or released.

Type KeyState

char
The character produced by this key event if any.

Type str

modifiers
A namedtuple containing modifier state at the time of this event.

Type tuple

locks
A namedtuple containing lock key state at the time of this event.

Type tuple

__init__(key, state, char, modifiers, locks)
Event representing key press/release.

Parameters

• key (Key) – The key that will be pressed/released.

• state (KeyState) – Whether the key will be pressed or released.

• char (str) – The character that will be typed. Currently this is ignored, you can set it to
None.

• modifiers (dict) – Modifier key state at the time of this event.

• locks (dict) – Lock key state at the time of this event.

class macpy.event.HotKey(key, modifiers)
A hotkey object.

Hotkey object are hashable and compare equal regardless of timestamps.

key
A key that triggered this event.

Type Key

modifiers
A frozenset of modifier keys that were also pressed.

Type frozenset

class macpy.event.HotString(string, triggers, trigger=None)
A hotstring object.

Hotstring objects are hashable and compare equal regardless of timestamps and the current trigger.

2.2. Keyboard 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#frozenset

macpy Documentation, Release 0.1.0b

string
The string that needs to be typed to trigger this hotstring.

Type str

triggers
The trigger keys that need to be typed after the string. This frozenset may be empty.

Type frozenset

trigger
The trigger that triggered this hotstring. May be None.

Type str

2.3 Window

class macpy.event.WindowEvent(window, event_type)
Event representing window creation, destruction and focus change.

window
The window that was created/destroyed/focused.

Type Window

type
The action that was taken on the window.

Type WindowEventType

14 Chapter 2. Events

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER 3

Enumerations

class macpy.RecordType
An enumeration specifying which events to record.

KEYBOARD
Record keyboard events only.

POINTER
Record pointer events only.

BOTH
Record both keyboard and pointer events.

class macpy.key.Key
An enumeration describing platform independent keys/buttons.

While members of this enum behave the same on every platform, not every platform defines every key. For com-
plete list of keys/buttons defined on your platform see input.h on Linux and Virtual Keycodes on Windows.

Members of this enum are also valid tuple where first member is a Linux event code and second member is a
Windows virtual keycode. These can also be accessed as attributes ec and vk respectively.

ec
A Linux event code that is this enum member.

Returns A Linux event code.

Return type EventCode

vk
A Windows virtual keycode that is this enum member.

Returns A Windows virtual keycode.

Return type VirtualKeycode

class macpy.key.KeyState
An enumeration describing whether the key/button is pressed or released.

This enum implements __bool__(), so if the key is pressed it will be True and False otherwise.

15

https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

macpy Documentation, Release 0.1.0b

class macpy.event.PointerAxis
An enumeration describing pointer scrolling axis.

class macpy.event.WindowState
An enumeration describing window state.

class macpy.event.WindowEventType
An enumeration describing whether window was created, destroyed or focused.

16 Chapter 3. Enumerations

Python Module Index

m
macpy, 3
macpy.event, 11
macpy.key, 15

17

macpy Documentation, Release 0.1.0b

18 Python Module Index

Index

Symbols
__init__() (macpy.event.KeyboardEvent method), 13
__init__() (macpy.event.PointerEventAxis method),

12
__init__() (macpy.event.PointerEventButton

method), 12
__init__() (macpy.event.PointerEventMotion

method), 11

A
activate() (macpy.Window method), 8
axis (macpy.event.PointerEventAxis attribute), 12

B
BOTH (macpy.RecordType attribute), 15
button (macpy.event.PointerEventButton attribute), 12

C
char (macpy.event.KeyboardEvent attribute), 13
click() (macpy.Pointer method), 6
close() (macpy.Keyboard method), 3
close() (macpy.Pointer method), 5
close() (macpy.Window method), 9

E
ec (macpy.key.Key attribute), 15
Event (class in macpy.event), 11

F
force_close() (macpy.Window method), 9

G
get_active() (macpy.Window class method), 8
get_button_state() (macpy.Pointer method), 7
get_by_class() (macpy.Window class method), 8
get_by_title() (macpy.Window class method), 8
get_key_state() (macpy.Keyboard method), 3
get_under_pointer() (macpy.Window class

method), 8

H
HotKey (class in macpy.event), 13
HotString (class in macpy.event), 13

I
init_hotkeys() (macpy.Keyboard method), 4
install_keyboard_hook() (macpy.Keyboard

method), 4
install_pointer_hook() (macpy.Pointer

method), 6
install_window_hook() (macpy.Window class

method), 7

K
Key (class in macpy.key), 15
key (macpy.event.HotKey attribute), 13
key (macpy.event.KeyboardEvent attribute), 13
Keyboard (class in macpy), 3
KEYBOARD (macpy.RecordType attribute), 15
KeyboardEvent (class in macpy.event), 13
keypress() (macpy.Keyboard method), 5
KeyState (class in macpy.key), 15

L
list_windows() (macpy.Window class method), 7
locks (macpy.event.KeyboardEvent attribute), 13

M
macpy (module), 3, 15
macpy.event (module), 11, 15
macpy.key (module), 15
maximize() (macpy.Window method), 9
minimize() (macpy.Window method), 9
modifiers (macpy.event.HotKey attribute), 13
modifiers (macpy.event.KeyboardEvent attribute), 13
modifiers (macpy.event.PointerEventAxis attribute),

12
modifiers (macpy.event.PointerEventButton at-

tribute), 12

19

macpy Documentation, Release 0.1.0b

modifiers (macpy.event.PointerEventMotion at-
tribute), 11

move() (macpy.Window method), 9

P
pid (macpy.Window attribute), 7
Pointer (class in macpy), 5
POINTER (macpy.RecordType attribute), 15
PointerAxis (class in macpy.event), 15
PointerEventAxis (class in macpy.event), 12
PointerEventButton (class in macpy.event), 11
PointerEventMotion (class in macpy.event), 11
position (macpy.event.PointerEventMotion attribute),

11
position (macpy.Pointer attribute), 7
position (macpy.Window attribute), 8

R
record() (in module macpy), 3
RecordType (class in macpy), 15
register_hotkey() (macpy.Keyboard method), 4
register_hotstring() (macpy.Keyboard method),

5
replay() (in module macpy), 3
resize() (macpy.Window method), 9
restore() (macpy.Window method), 9

S
scroll() (macpy.Pointer method), 6
send_event() (macpy.Window method), 9
size (macpy.Window attribute), 8
state (macpy.event.KeyboardEvent attribute), 13
state (macpy.event.PointerEventButton attribute), 12
state (macpy.Window attribute), 8
string (macpy.event.HotString attribute), 13

T
time (macpy.event.Event attribute), 11
title (macpy.Window attribute), 7
trigger (macpy.event.HotString attribute), 14
triggers (macpy.event.HotString attribute), 14
type (macpy.event.WindowEvent attribute), 14
type() (macpy.Keyboard method), 5

U
uninit_hotkeys() (macpy.Keyboard method), 4
uninstall_keyboard_hook() (macpy.Keyboard

method), 4
uninstall_pointer_hook() (macpy.Pointer

method), 6
uninstall_window_hook() (macpy.Window class

method), 7
unregister_hotkey() (macpy.Keyboard method),

5

unregister_hotstring() (macpy.Keyboard
method), 5

V
value (macpy.event.PointerEventAxis attribute), 12
vk (macpy.key.Key attribute), 15

W
warp() (macpy.Pointer method), 6
Window (class in macpy), 7
window (macpy.event.WindowEvent attribute), 14
WindowEvent (class in macpy.event), 14
WindowEventType (class in macpy.event), 16
WindowState (class in macpy.event), 16
wm_class (macpy.Window attribute), 7

20 Index

	Interfaces
	Keyboard
	Pointer
	Window

	Events
	Pointer
	Keyboard
	Window

	Enumerations
	Python Module Index
	Index

